Late embryogenesis and morphogenesis of the cotylocidium larva of *Rohdella amazonica* (Trematoda: Aspidogastrea)

Background. Aspidogastrea, a basal taxon of Trematoda, is regarded as being among the most primitive of neodermatan flatworms. Understanding the developmental biology and larval morphology of its members might lead to better understanding of the phylogenetic relationships among this and more derived groups such as the Digena and Cestoda.

Objectives. Late stages of embryogenesis and morphogenesis of the cotylocidium larva of *Rohdella amazonica*, an aspidogastrean parasite of fish, were studied to reveal the functional and developmental ultrastructure of the larva, as well as phylogenetically relevant characteristics of the embryos and larva.

Material and Methods. Gravid worms were removed from the intestine of naturally infected banded puffer fish *Colomesus psittacus*, collected from the Bay of Marajó, Paracauri River (Pará, Brazil), and processed by standard methods of transmission electron microscopy (TEM).

Results. During late cleavage and rearrangement of the blastomeres, the vitelline syncytium that plays a role in eggshell formation and nutrient provision to the embryo completes its apoptotic degeneration as the embryonic mass grows substantially. Early larval morphogenesis involves cellular positioning that defines antero-posterior polarity of the differentiating larva. Progressing through larvogenesis, the anterior end forms a muscular oral sucker surrounding the mouth, which leads inward into the pharynx and expanding digestive cavity. At the posterior end, a large disc forms as a precursor to the eventual ventral disc. The fully formed cotylocidium, still within the eggshell, is flexed ventrally, bringing the two poles into near juxtaposition. The neodermatan tegument with outwardly projecting small microvilli becomes fully formed, as two granular regions, myocytes, and a protonemphridial system occupy the rest of the body’s interior.

Conclusions. The ultrastructural features described here are very similar to those reported for *Aspidogaster limacoides* from fish and *Cotylogaster occidentalis* from molluscs, but differ from the more diverse miracidia of digenets, which have been studied more extensively.

Figure Abbreviations

- α-gl = α-glycogen
- β-gl = β-glycogen
- BI = blastomeres
- C = ciliary tuft
- EE = embryonic envelope
- ES = eggshell
- ER = endoplasmic reticulum
- FC = flame cell
- G1 = gland type 1
- G2 = gland type 2
- G3 = exit of gland type 1
- gl = glycogen
- HCH = heterochromatin
- INT = intestine
- L = lipid droplet
- m = mitochondria
- M = myofilbrils
- Mn = macromere nucleus
- MIN = micromere nucleus
- Mv = microvilli
- N = nucleus
- N1 = nucleus type 1
- N2 = nucleus type 2
- N3 = nucleus type 3
- O3 = oral sucker
- Op = operculum
- Ph = pharynx
- sg1 = secretory granule type 1
- sg2 = secretory granule type 2
- sp = spermatozoon
- T = tegument
- UW = uterine wall
- VD = ventral disc

Presented at the 13th European Multicolloquium of Parasitology (EMOP-XIII), Belgrade, Serbia, 12-16 October 2021